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A Preliminary Test for Structure in Large,
High-Dimensional Data Sets

Fred W. Huffer and Cheolyong Park

1 Introduction

In this report we suggest a general approaJ, and a specific test statistic which may
help to detect the presence of 'interesting' multivariate structure in a large, high-
dimensional data set. Our goal is to supply a preliminary test which is fairly easy
to compute and which might predict whether it is worthwhile to carry out more
computationally intensive procedures such as projection pursuit or cluster analy-
sis. The basic idea underlying this approach is that a data set (or distribution) in
which the coordinates (covariates) are independent is 'boring'. In such a data set,
the multivariate structure is entirely determined by the marginal distributions. For
example, if a data set with independent coordinates contains clusters, these clusters
can be detected by merely examining the marginal distributions. More generally,
a data set may be considered 'boring' if there is some simple transformation which
converts it into a data set with independent coordinates. For example, an appropri-
ate linear transformation will convert the multivariate normal (MVN) distribution
into a distribution with independent normal coordinates, and thus the MVN distri-
bution is 'boring'. If a distribution is 'boring' in the sense we have outlined, the
multivariate structure is trivial and there is no point in carrying out procedures such
as projection pursuit or cluster analysis.

Our approach, put briefly, is as follows: Given a data set, we attempt to find a
simple transformation which converts it into a new data set in which the coordinates
are (at least approximately) independent. After transforming the data, we test the
null hypothesis of independence by discretizing each coordinate and analyzing the
resulting categorical data as a contingency table. We can compare the cell counts
in this contingency table with those expected under independence and, if a formal
test statistic is desired, we can employ the usual chi-squared test of independence
for contingency tables. If we resoundingly reject the hypothesis of independence,
then the data set has 'interesting' multivariate structure and more computationally
intensive procedures should then be used to determine the form of this structure.
If we fail to reject the hypothesis of independence (and there is also no evidence
of structure in the usual bivariate scatter plots of the data), then the data set is
probably 'boring' and further exploration with expensive techniques might not be
worthwhile.
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There may be very few high-dimensional" raw data sets which are 'boring' in
the sense given above. However, the same approach can also be used to examine
residuals obtained after model fitting. Typiczly, if the model is correctly chosen,
one expects the residuals to be without structure. The methods we present may
prove useful in detecting any remaining structure in the residuals.

Any preliminary examination of a data set should include studying the marginal
distributions and looking at numerous bivariate scatter plots. The procedure de-
scribed in this report does not in any way replace these elementary techniques.

Detailed Description of the Method

Let X be an n x p data matrix with elements xii. The n rows of X are obtained
by random sampling from some p-variate population having a continuous joint dis-
tribution.

A. Transform the Data: The data should be transformed to remove known, ob-
vious or suspected dependence/structure. (Our primary goal is to discover
the existence of surprising or unsuspected multivariate structure, hence we
typically try to remove known or obvious dependence such as that indicated
in the correlation matrix or in bivariate scatter plots.) There are an infinite
variety of transformations which can be used; we shall discuss a few of the
possibilities later. In the remainder of this description, the transformed data
will be denoted by Z, an n x p matrix with elements zi.

B. Discretize the Data: Choose an integer d. Replace the continuous-valued
quantities zij by discrete-valued quantities tij which take on the values 1, 2,... , d.
This is accomplished by dividing the values in each column of Z into d groups
of equal size n/d, that is, we set ti = k if (k - 1)(n/d) < rij _< k(n/d) where
rii is the rank of zij among the values of the ith column of Z. The matrix with
entries tij will be called T. To avoid complications, we shall always assume
that d divides n exactly. In practice, if we are given a data set not exactly
divisible by d, we simply throw out a few observations (at most d - 1) chosen
at random. Since d is small (typically 2 < d < 4), we lose little by doing this.

C. Form a Contingency Table: There are dP possible p-vectors 7r = (Irl, 7r2 ,. . . , 7rp)
with 1 < ri < d for all i. These vectors may be regarded as cells in a
d x d ×... x d contingency table. For each cell 7r we compute the cell count U,
which we define to be the number of observations (rows of T) which 'belong'
to 7r. More formally, U, = #Ji : ti. = ir} where ti. denotes the i"h row of T.

D. Study the Distribution of Cell Counts: Now we study the frequency dis-
tribution of the dP cell count values U, and compare this with the frequency
distribution expected under the null hypothesis of independence. Let Mk de-
note the number of cells containing exactly k observations, that is, A,!=
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U, = k}. It is clear that

- r= n(2.1)

The values of Mk which are expected under independence can usually be well
approximated by a Poisson frequency distribution with a mean of n/dP ;

withAk CA d- "n (2.2)

If the observed values of Mk differ greatly from the expected Poisson fre-
quencies, this is evidence for the existence of 'interesting' higher dimensional
structure.

It is intuitively clear that the presence of 'interesting' structure in the data
will tend to increase the variability of the cell counts U,. This suggests using
the sample variance 1 (u,_ 2

W ) TPE(2.3)

of the cell counts as a test statistic for the existence of structure. This statistic
is proportional to the usual chi-squared statistic for testing independence in
contingency tables. We reject the hypothesis of independence when W is
sufficiently large. We have obtained approximations p, and aw (given later)
for the mean and variance of W under the null hypothesis. These may be used
to conduct rough hypothesis tests based on

z - VY" - AW (2.4)

oaw

These tests must be used with caution; with the usual a-levels of .05 or .01
they are likely to detect differences from the null hypothesis which are too
small to be of any practical significance. This is typical of statistical testing in
any situation involving large sample sizes. Rather than testing, it may be more
useful to directly compare the magnitudes of W and uw,, perhaps in terms of
the ratio W/u,,,.

Transformation T1

Step A is obviously the only difficult step. One possible transformation is to replace
the raw data X by the principal components Z = xr. Here r is a p x p orthogonal
matrix which diagonalizes the sample covariance matrix E of X; rt~r is a diagonal
matrix. In the Examples section, we shall refer to this transformation as T1. This
sort of transformation removes the correlation structure in the data and is a common
initial step in many statistical procedures; see, for example, Friedman (1987). In
our situation, the rationale for the transformation is as follows. Suppose there exists
an orthogonal coordinate system in which the coordinates are actually independent,
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that is, an observation X = (X 1 ,X 2,...,Xp, is obtained as X = YAt where A
is an orthogonal matrix and the coordinates (Y1, Y2 ,... , Y) of Y are independent.
If Var(Y) > Var(Y2 ) > ... > Var(Y) and the sample size n is sufficiently large,
then r . A and the principal components Z will be approximately equal to the
independent coordinates Y. However, if Var(Y) = Var(Y) for some i # j (or even
if there is approximate equality), then the principal components Z will not usually
be very close to the values Y. So this transformation does not always succeed.

Transformation T2

Another transformation which may be useful is to separately transform each of Lhe
marginal distributions (columns of X) to normaity, and then further transform the
data (using a linear transformation) so that the variables are uncorrelated. Stating
this in detail we have:

1. Transiorm each variable (column) to normality. This is done in the usual way.
Let ri, denote the r,,nk of xij among the values of the jth column (variable).
Replace xi by its normal score yij = 4-'((rii - !)/n) where t is the standard
normal distribution function. The n x p matrix of normal scores yij will be
denoted by Y. (This use of Y is unrelated to the earlier usage.)

2. Now apply a linear transformation to Y chosen so that the new variables Z are
uncorrelated and have variance equal to one. That is, choose a p x p matrix
A such that the transformed data Z = YA has a sample covariance matrix
equal to the identity matrix I. There are many correct choices for the matrix
A.

In the examples section, we refer to this transformation as T2. To motivate this
procedure, suppose that we have sampled X from a population which is roughly
similar to the multivariate normal (MVN) distribution (and therefore uninteresting).
In this case, there is reason to hope that the initial transformation to marginal
normality will cause the data to closely resemble a sample from an MVN population.
Then the linear transformation to remove the correlation will convert the data into
what is essentially a sample from the MVN distribution with covariance matrix
equal to the identity, and for this distribution the coordinates are independent as
desired.

The previous two transformations are of general utility. However, in some cases
one may have to tailor the transformation to the particular data set. For example,
if a bivariate scatter plot of variable i (Xi) versus variable j (X,) reveals a curved,
approximately quadratic relationship between Xi and X,, then a reasonable trans-
formation might replace Xi by the residuals from the regression of Xi on X, and
X?. This transformation would remove the curvature from the scatter plot.
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3 Examples

Sampling from the Multivariate-Normal Distribution

The MVN distribution is surely the most boring distribution. We consider it boring
because a linear transformation converts it into a distribution with independent
coordinates. Researchers studying projection pursuit methods consider it boring for
different reasons (see Huber (1985)). We shall use the MVN distribution to study
the null behavior of our methods.

In our first example, X is a 1024 x 10 matrix composed of independent columns
generated from a standard normal distribution. This data has no structure of any
sort. If we suspected this in advance, we would skip the transformation (Step A)
and just carry out the remaining steps B to D. We have a simple computer program
which carries out steps B to D. In this case we obtain the output:

For the number of cuts = 2,
The frequecy distribution of the cell counts is:

0 1 2 3 4 5 6 7 8
Observed 377.00 387.00 169.00 73.00 11.0 6.00 1.00 0.00 0.00
Expected 376.71 376.71 188.35 62.78 15.7 3.14 0.52 0.07 0.01

The moments of the distribution of cell counts are:
mean variance skewness kurtosis

Observed 1 1.0332 1.09910 1.35996
Expected 1 0.9893 0.98396 0.94713

The z-score for the variance of cell counts - 1.004

We have chosen to set d = 2; the computer output reports this as the 'number
of cuts'. This means we have divided the data space into dP = 210 = 1024 cells.
There are also n = 1024 observations (rows of X), so that the average number of
observations per cell is n/dP = 1. The output lists the 'observed' frequency distribu-
tion: 377 cells are empty, 387 cells contain exactly 1 observation, 169 cells contain
exactly 2 observations, etc. The 'expected' frequency distribution is computed using
the Poisson approximation mentioned earlier. The observed and expected frequency
distributions are quite close; the differences are what one would expect from random
variation.

The 'observed' moments are computed from the observed frequency distribu-
tion. (The skewness and kurtosis have been standardized by the variance in the
usual way.) These can be compared with the 'expected' moments; the true mo-
ments under the assumption of independence. These 'expected' moments are not
based on the Poisson approximation; they are the exact moments. The formulas
for these moments are given in the next section. To aid in comparing the observed
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and expected variance (1.0332 versus 0.9893), we have computed the z-score which
attained the modest value of 1.004.

In summary, for this example our procedure has found no evidence of depen-
dence/structure. This agrees with the known truth in this case.

Suppose we did not suspect a priori that this data set had independent columns.
We would then have performed some type of transformation in Step A. Using either
T1 or T2 would still lead to the conclusion that no structure is visible in this data.
For example, using T2 (with the matrix A chosen to be upper triangular) leads to
the output:

For the number of cuts - 2,
The frequency distribution of the cell counts is:

0 1 2 3 4 5 6 7 8

Observed 367.00 396.00 182.00 62.00 10.0 5.00 1.00 1.00 0.00

Expected 376.71 376.71 188.35 62.78 15.7 3.14 0.52 0.07 0.01

The moments of the distribution of cell counts are:
mean variance skewness kurtosis

Observed 1 1.00391 1.20582 2.37976
Expected 1 0.98930 0.98396 0.94713

The z-score (conservative) for the variance of cell counts = .334

Upper bound for z-score - 1.37

There is a discrepancy between the observed and expected kurtosis, but this means
little as the sample kurtosis is highly variable. Note that we now report two different
z-scores. The transformation T2 makes the columns of Z (the transformed data)
have sample correlations exactly equal to zero, which would not occur if the columns
of Z were actually independent. This makes the variance of the cell counts somewhat
smaller than would occur under the assumption of independence. Thus the usual z-
score is conservative. A crude and heuristic degrees of freedom correction is used to
obtain a larger z-score (reported in the output as the 'upper bound') which appears
in simulations to be 'liberal'. For details see Section 5. In practice, the difference
between these two z-scores is of little importance, for with a large sample size n, one
typically does not reject the null hypothesis unless both z-scores are quite large.

As a variation on the previous example, we now consider a data set with cor-
related columns. The data matrix X is still 1024 x 10. Observations are sampled
from a MVN distribution having a correlation of .2 between all pairs of covariates.
If we neglect to transform this data, but apply steps B-D directly to the raw data,
we obtain the following results.

For the rmber of cuts - 2,

The frequency distribution of the cell counts is:
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0 1 2 3 -4 5 6 7 8

Observed 431.00 358.00 154.00 45.00 16.0 6.00 8.00 1.00 1.00

Expected 376.71 376.71 188.35 62.78 15.-7 3.14 0.52 0.01 0.01

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Observed 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 1

Expected 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The moments of the distribution of cell counts are:

mean variance skewness kurtosis

Observed 1 2.32031 6.50023 79.12713

Expected 1 0.98930 0.98396 0.94713

The z-score for the variance of cell counts = 30.441

Even a rather modest correlation of .2 has dramatically altered the frequency
distribution of the cell counts; a cell count of 18 or 25 is essentially impossible under
independence. Thus our procedure loudly proclaims that there is structure in this
data. However, the only structure in the data is the correlation structure which is
removed using either transformation Ti or T2. Using T2 (with upper triangular A)
gives us:

For the number of cuts -

The frequency distribution of the cell counts is:
0 1 2 3 4 5 6 7 8

Observed 393.00 351.00 189.00 71.00 18.0 2.00 0.00 0.00 0.00

Expected 376.71 376.71 188.35 62.78 15.7 3.14 0.52 0.07 0.01

The moments of the distribution of cell counts are:
mean variance skewness kurtosis

Observed 1 1.03516 0.90684 0.36108

Expected 1 0.98930 0.98396 0.94713

The z-score (conservative) for the variance of cell counts = 1.049
Upper bound for z-score - 2.101

This output indicates that no structure remains in the transformed data.

Examples with Randomly Located Clusters

We now consider two examples where the data consists of many randomly located
clutters. We take X to be 1024 x 10 in both cases. The observations in X are made
up of m clusters. The cluster centers (denoted j1i,2,.. .Am) are independently
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generated from a MVN(0, I) distribution. The members of cluster i are indepen-
dently generated from a MVN(pti,aI) distribution. Here I is the 10 x 10 identity
matrix. In both examples, the value of a, which controls the size of the clusters,
has been made large enough so that there is little evidence of clustering (or other
structure) visible in the bivariate scatter plots. A careless data analyst might easily
conclude there is no structure in the data.

Our analysis is given below. In both cases, the data has been transformed using
T2.

The data in our first example is composed of 256 clusters, each containing 4
observations. The value of a is 0.2. The output for d = 2 is:

For the number of cuts - 2,
The frequency distribution of the cell counts is:

0 1 2 3 4 5 6 7 8
Observed 538.00 225.00 105.00 80.00 48.u 19.00 3.00 4.00 2.00
Expected 376.71 376.71 188.35 62.78 15.7 3.14 0.52 0.07 0.01

The moments of the distribution of cell counts are:
mean variance skewness xurtosis

Observed 1 1.96875 1.64175 2.67800
Expected 1 0.98930 0.98396 0.94713

The z-score (conservative) for the variance of cell ccunts = 22.401
Upper bound for z-score - 23.944

This clearly signals the existence of some type of structure in the data.
By making d larger, we can check for the existence of clustering or nonuniformity

on a smaller ocale. With d = 4, ,he nunrLer of cclls in our c3ntingency tahle is
410 = 1048576. Storing a complete contingency table this large would require too
much memory. However, since n = 1024, the vast majority of these cells are empty.
Because there is no need to keep track of the empty ceils, the amount of memory
we require is not excessive. Carrying out our analysis on the same data using d = 4
leads to:

For the number of cuts = 4,
The frequency distribution of the cell counts is:

0 1 23
Observed 1047634 868 66.0 8
Expected 1047552 1023 0.5 0
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The moments of the distribution of cell counts are:
mean variance skewness kurtosis

Observed 0.00098 0.00115 39.47442 18a5.986
Expected 0.00098 0.00098 31.99860 1023.851

The z-score (conservative) for the variance of cell counts = 128.53
Upper bound for z-score - 128.565

This output shows that the. number of cells containing 2 or 3 observations is much
larger than one would expect under independence. This concludes our discussion of
the first example.

The data in our second examplc is composed of 16 clusters, each containing 64
observations. The value of a is 0.7. The output for d = 2 is:

For the number of cuts - 2,
The frequency distribution of the cell counts is:

0 1 2 3 4 5 6 7 8910
Observed 473.00 301.00 134.00 61.00 30.0 14.00 4.00 3.00 1.00 1 2
Expected 376.71 376.71 188.35 62.78 15.7 3.14 0.52 0.07 0.01 0 0

The moments of the distribution of cell counts are:
mean variance skewness kurtosis

Observed 1 1.78516 2.17656 7.29766
Expected 1 0.98930 0.98396 0.94713

The z-score (conservative) for the variance of cell counts = 18.202
Upper bound for z-score = 19.648

Again, our analysis clearly shows that structure exists in this data.
The weakness of the method in both examples is that it gives no clear indication

of the nature of the structure which is detected.

An Example Using Speech Data

The data matrix X in this example is 1507 x 10. The data was obtained by sampling
from a much larger matrix of digitized speech data consisting of 10 dimensional 'lpc'
vectors. The lpc vectors in this sample all correspond to 'unvoiced' sounds.

Suppose the object of our analysis is to find out if the 'unvoiced' lpc vectors tend
to lie in clusters. Examination of the bivariate scatter plots reveals some structure in
the data (curvature and heteroscedasticity), but no evidence of clustering. Applying
transformation TI (principal components) to this data and then carrying out our
analysis for d = 4 leads to the following output:
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For the number of cuts - 4,
The frequency distribution of the cell counts is:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Observed 1047111 1463.00 0.00 0 0 0 0 0 0 1 0 0 0 0 0 0 0
Expected 1047070 1504.84 1.08 0 0 0 0 0 0 0 0 0 0 0 0 0 0

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
Observed 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
Expected 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The moments of the distribution of cell counts are:
mean variance skewness kurtosis

Observed 0.00144 0.00264 317.00704 206605.0732
Expected 0.00144 0.00144 26.37693 695.7016

The z-score (conservative) for the variance of cell counts = 611.618
Upper bound for z-score = 611.663

Examining the frequency distribution, we see there is one cell which contains 35
observations! There is another cell which contains 9 observations. If the coordinates
were in fact independent, one would not expect to see any cells with more than 2
observations, so these two cells must be regarded as quite unusual. A little detective
work reveals that these two cells are neighboring cells lying close to the center of the
data set. Thus, this data set contains a small, but relatively dense cluster (containing
around 44 = 35 + 9 observations) near its center. In terms of speech, I do not know
what this cluster corresponds to. It may turn out to be of no importance.

Are there any other clusters in the data? In order to investigate this question,
all but one (43 out of 44) of the observations in the two unusual cells were deleted
from the data set. Reanalyzing the data (using transformation Ti and d = 2) leads
to the following:

For the number of cuts = 2,
The frequency distribution of the cell counts is:

0 1 2 3 4 5 6 7 8
Observed 278.00 323.00 230.00 127.00 Z)8.00 22.0 5.00 0.00 1.00
Expected 245.13 350.46 250.52 119.39 42.67 12.2 2.91 0.59 0.11

9
Observed 0.00

Expected 0.02
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The moments of the distribution of cell counts are:
mean variance skewness kurtosis

Observed 1.42969 1.65521 0.96481 1.00909

Expected 1.42969 1.41437 0.82291 0.66243

The z-score (conservative) for the variance of cell counts = 3.847
Upper bound for z-score - 4.962

This suggests that some structure exists (which we already know from examining
the bivariate scatter plots), but that there is no clustering which is as pronounced
or dramatic as that found in the earlier simulated examples. If any clusters remain
in this data set, they are not very well defined.

4 The Null Distribution

In this section we shall give expressions for the moments and distribution of U ,
the number of observations contained in ceil 7r. We also present a formula for the
variance of the quantity W defined in equation 2.3. All these results are derived
under the assumption that the coordinates are independent; under this assumption
the results are exact. If a data-dependent transformation (such as T1 or T2) has
been applied to the data, the results can only be regarded as approximations. Proofs
for these results are given in an appendix.

The following notation will be useful. For any real number x and positive integer
k we define

k-i

(X)k H (X-j) (4.1)
j=0

so that, for instance, the combinatorial coefficient (,) may be written as (X)k/k!.
Let ; be the probability that the first k observations belong to the cell 7r. More

formally,
G - Pr{ti. = 7r for 1 < i < k}

where ti. denotes the ith row of T. Using urn model arguments (sampling wi'hout
replacement) it is easy to show that

The factorial moments of U, can now be given as

E(U,)k = (n)k . (4.2)

The ordinary moments (about the origin) can be obtained directly from the factorial
moments. The general formula is given in the appendix. As special cases we note

11



that
n

EU,, = n6 =

EU,2 = n1 + n(n -1)

EU = g1 + 4n(n - 1)6 + n(n - 1)(n - 2)6

EU,4 = n , + 7n(n - )2 + 6n(n - 1)(n - 2) 3 + n(n - 1)(n - 2)(n -3)

Finally, the central moments may be obtained from the moments about the origin
via the formula

E(U. - 14): = E (-,)'EU -

This is the route used to calculate the moments reported in the computer output in
the Examples secti,,a. The skewness and kurtosis are, as usual, defined by

skewness -
O-

3

and

kurtosis = E(U, -)4 3O4

where 1 and o2 are the mean and variance of U,.
The exact distribution of the cell counts is given by

Pr{U, = k} = ( ) E (n ()J+ (4.3)

where o = 1. In practice, the series is truncated when the terms become sufficiently
small. This series should give accurate results when the terms decay to zero rapidly,
but the alternating signs may render the formula useless when the rate of decay is
slow. The expected frequency distribution reported in the computer output in the
Examples section was obtained from the Poisson approximation in (2.2)

We now show how to compute the quantities p,,, and or, occurring in equation
2.4 for the z-scores. We shall freely use the ordinary and factorial moments which
are easily calculated using the previously given formulas. First the mean:

Aw =EW =EU!- (n)2(4)

Now for the variance. Define

Qjk = (n { G) (n/d:;k + -) (n/d),<n/d),, }
Then we can write

O Var(W) Q22 + 2Q12 + Q1 - (EU2)' (4.5)

+ 1 (4E(U.)3 + 6E(U) 2 + EU)
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This expression is easy to compute with, but rather difficult to comprehend. When

n and &' are both large, useful approximations are given by

n 2 2n 2

W and a. 2P n 2d (4.6)

Note that W = (n/d2P)X2 where X2 is the usual test statistic for independence in

contingency tables. Thus (4.6) corresponds to the fact that the variance of a x 2

random variable is twice its mean. These formulas are based upon dP degrees of
freedom and will somewhat overstate the actual mean and variance.

5 The Upper Bound for z-scores

As noted earlier, if the data has been transformed (perhaps by using T1 or T2) to

remove all correlations, the z-scores computed from (2.4) will be conservative (too
small). The following correction tends to produce a z-score which is liberal (too

large). The two z-scores give us a likely range of values which can be used to carry
out crude hypothesis tests.

Define

r dp - d1)- I]

The liberal z-score is given by

W - (5.1)

o,,,, V/r

The values of p, and a, are those defined in the previous section. Note that (P)
is the number of correlations which are estimated, that is, removed from the data,
and dP - p(d- 1) - 1 is the number of degrees of freedom in our d xdx ... x d
contingency table.
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APPENDIX

In section 2 (step B), we defined the n x p matrix T. Under the assumption that
the coordinates are independent, it is clear that the columns of T are independent.
In the process of constructing T, we assume that d divides n exactly. Thus each
column consists of values {1, 2,..., d} with n/d repetitions of each value, and entries
in a column are exchangeable.

Using urn model arguments ( sampling without replacement ) and by indepen-
dence of columns, we have

(n/d)k (A1
~(A. 1)

S(n)k I

Let C' be the class of subsets in {1,2,..., n} with the cardinality k. i.e.

C={a c {f,2. n}: aI=}

for k = 1,2,..., n, where jal, the cardinality of o, is the number of elements in the
set a. Then it is easy to show the relation

( k) E I I(ti. = -r,V iEoa), (A.2)

where ti. denotes the ill row of T. By exchangeability of rows, we have

From (A.3), the factorial moments of U,. becomes

Z(U,,), = (n)kGk. (A.4)

The ordinary moments ( about the origin ) can be obtained directly from the
factorial moments. This yields

k
= _, S j (n ) j G , (A .5 )

where S(j) is a Stirling number of the second kind see Abramowitz and Stegun
(1970) for definitions and tables of these numbers.

To derive the exact distribution of U,, we can use the relation

(U,, = k) =(ti. -- r, Vi E 0, ti. -4 r, V € ).
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Thus by exchangeability of rows, we have

P ( U , = k) = ()E I(t,.=,ri I(t . t

= Z) .L"+ {1-I(t,.=r)}
k = i=k+l

j=o J

We now show how to derive the variance of W in (2.3). First, we will simplify
the formula for Var(W).

Var(W) = Var (U 2  n A)2)

= Var U'2

( dP

= E{ (zU2)2} {E(YzU2)}12

= E( U2, UA2 ) - (EU,2,) 2 , (A.7)

where 111, H2 are iid uniform random variables on the set of all possible cells. Now
we can derive the relation

'I(ti. = H11,Vi E 01, t,. = [I,,Vi E 02)

-(Un) (UrI) + [( )- ("~) ("Z)] brl,fl, (A.8)

where 6n,n, is the Kronecker delta, and the summation on the left hand side is over
all a, E C7Ia 2 E C" with 01 fn 2 = @. First, take expectation on the left hand side
of equation (A.8). Then by exchangeability of rows, it becomes

j, k ) P( ti. = ri, 1 < i < j, ti. = 112, J + 1 < i < j + k. (A.9)

Using the independence of columns of T, and using the fact that if H1 and 12 are
iid uniform random variables, then coordinates of 11, are independent of those of
112, we can show that (A.9) becomes

( n { n/d),+k+ (1- 1) (n/d)j(n/d)k }.
k d (n)+k (n)+.O)

15



Now take expectation on the right hand side of equation (A.8) to get

E~h)(f2 + + E[()-( )(L ].(l1

Define

Q jk = Kn),+ k 1 (n /d ),+ k, I ) _ _ _ _ _ _ _ _ _~k

{ d (n)i+k d (n)i+ ",

By combining (A.10) and (A.11) and then by multiplying j!k! on both sides, we
have

E{ (Un)(Un,) } + 1 E{ (U.b)+k - (U,) 1 (U-)k} = Q,k

or

{ (Un,),(Un,)k} = Qj' + E { (U.),(U-)k - (A.12)

Thus

Var(W)= E(U 1 U,) - (EU )2

= E { (Un,) 2 (Un,) 2 + 2Un, (Un2 )2 + UnUn2} - (EU7) 2

=Q22 + 2Q 1 2 +Q11 - (EU2) 2

1 +U+ T,. { (U 2)2(U-) 2 + 2Uir(Ur) 2 + U , - 4- 2(U.) 3 - (U,) 2 }

= Q22 + 2Q12 + Q11 - (EU) 2 +-1E{ U - (U.) 4 - 2(U,,.) 3 - (U,-) 2

)2 1
= Q22 + 2Q12 + Q11 - (EUr)2 + T {4E(U,) 3 + 6E(U-) 2 + EU,1 }A.13)

The statistic W is proportional to the usual X 2 test statistic for independence in
contingency tables. When p = 2, our formula for Var(W) is equivalent to a special
case of the Haldane-Dawson formala (Haldane. 1939; Dawson, 1954) for the variance
of X2.

In order to calculate an approximate value of Var(W) for large n and dP, we
can use the following approximation : for large y and for small k and j,

(Y)j+k (Y-J)=i1 k.1 kj A.14)

(Y) 1  k (y)k -=1i= Y-1 i} -

Thus

Q ., = (n)i+k [1l(n/d),+k + (1- (n/d)(n/d)k P

S d (n)i+k. (n)j+k,

(n) (n)k (n/d),(n/d)A: P (n),i'~ (n),(n)k 'j 1 (nld),+k P I
I(n),(n)k (n)i(n)k (n)i+&J d (n/d),(n/d)k d J

SE(U )E(U)k {1 - } {1 - {- 1 L 1

= - E(U,,),E(U,,),. (A.15)
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Hence

Q22 + 2Q12 -+ Qll - (EU,7)

=Q22 - f (,) 2+ 2 f{Q 12 - EUr1E(U,12} + Qii - (EU.,) 2

1 {2E(U-1 )2 + E r2.(A.16)
n

Finally by using E(U,,)k ; n k/dkP, we have

Var(W); - 1 {2E(U.) 2 + E~ 2+ 1 {4E(U,,) 3 + 6E(Ur)2 + EUW}
n T

=2- (A.17)

17
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